A NEW OXIDATION PROCESS
Transformation of gem - bishydroperoxides into esters

Abstract
Taiji Quan is a Taoist internal martial art. One account of the history of Taiji Quan credits its development to the Taoist immortal Chang San-feng, who is said to have drawn the inspiration for the art by watching a fight between an snake and an aggressive eagle. Chang San-feng was reportedly a master of Shaolin Kung Fu who reached an extraordinary level of cultivation through Taoist internal practices. Another account of the history of Taiji Quan is that many different Kung Fu masters developed it over a long period of time; as a synthesis of internal meditation and martial technique. Either way, the written history of Taiji Quan goes back about 300 years and it was not until the turn of the 20th century that it was introduced to the general public.

Taiji Quan is a very unique and powerful art, for both internal power and longevity. Taiji Quan is a martial art which embodies Taoist philosophy. When Taiji Quan was developed, the martial arts were very aggressive. One's proficiency was measured by the strength and aggression of attack, in terms of the Taoist principle of yin and yang this was a purely "yang" conception of martial arts. What was revolutionary about Taiji Quan was the incorporation of the yin element to fighting. In Taiji Quan one uses a balance of yin techniques with yang techniques, a balance between yielding and attacking. It is for this reason that Taiji Quan is described as a "needle hidden in a balance between yielding and attacking. It is for this reason that Taiji Quan is described as a "needle hidden in

Introduction
In recent years, interest in organic gem - bishydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Previously we reported a new effective method for the synthesis of gem -bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem -bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.

Presently, the chemistry for the use of gem -bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.

In recent years, interest in organic gem - bishydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Previously we reported a new effective method for the synthesis of gem -bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem -bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.

Keywords
Oxidation • gem -bishydroperoxides • α,α'-dicarboxylic acid esters • ω-hydroxycarboxylic acid esters • hydrogen • peroxide • boron trifluoride • ω-hydroxycarboxylic acid esters • hydrogen

Received 2 November 2005
accepted 8 February 2006

* E-mail: terentev@iac.ac.ru
recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Previously we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem -bis-hydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem - bis-hydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.

<table>
<thead>
<tr>
<th>Type of vegetation</th>
<th>Dominant plant species</th>
<th>Dry mass, n × 100 kg/ha</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogenic–moorly</td>
<td>Artemisia vulgaris L.</td>
<td>40 ± 3</td>
<td>67 ± 3</td>
</tr>
<tr>
<td>Pyrogenic–moorly</td>
<td>Artemisia vulgaris L.</td>
<td>31 ± 2</td>
</tr>
<tr>
<td>Pyrogenic–moorly</td>
<td>Artemisia vulgaris L.</td>
<td>31 ± 2</td>
<td>56 ± 3</td>
</tr>
<tr>
<td>Pyrogenic–moorly</td>
<td>Artemisia vulgaris L.</td>
<td>31 ± 2</td>
<td>56 ± 3</td>
</tr>
<tr>
<td>Pyrogenic–moorly</td>
<td>Artemisia vulgaris L.</td>
<td>40 ± 3</td>
<td>67 ± 3</td>
</tr>
<tr>
<td>Pyrogenic–moorly</td>
<td>Artemisia vulgaris L.</td>
<td>31 ± 2</td>
</tr>
</tbody>
</table>

* Reaction conditions: reactivity temperature 40°C; pH 7.5; T = 10 ± 1°C, overall reaction time was 2 hours.
** The yields were calculated from the isolated products.
n recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Previously we reported a new effective method for the synthesis of gem-bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem-bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. In recent years, interest in organic gem - bis-hydroperoxides has increased sharply with respect to the cyclic peroxides possessing high antimalarial activity [1–9]. Presently we reported a new effective method for the synthesis of gem-bishydroperoxides based on a reaction of ketals with hydrogen peroxide catalyzed by boron trifluoride complexes [10]. This methodology has readily made these compounds accessible and has opened an opportunity for their wider use in organic synthesis. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.

1.2 Den not being used in oxidation processes

Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes. Presently, the chemistry for the use of gem-bishydroperoxides has been insufficiently studied. Furthermore these substances possess a high content of active oxygen not being used in oxidation processes.